新航道 - 用心用情用力做教育!
咨询热线:400-011-8885
投诉电话:400-097-9266
AI客服 精准解答您的学习规划问题

A-Level数学篇:如何选择分部积分中的u&v

2022-03-09    浏览:54     来源:新航道官网
免费咨询热线:400-011-8885

  积分在P4中是很多学生冲击高分的拦路虎,那其中最为头疼的就是分部积分了。分部积分是用于解决乘积形式函数的积分,最关键性的一步就是如何选择u&v。

  对于u&v的选取需要满足两个基本要求:

  1. v要容易求出;

  2. ∫v du要比∫u dv容易求出。

  那接下来我们就进一步探讨u的选择顺序并分析一些常见的问题和考点。

  Find ∫xcosx dx

  如若:令u=cosx dv/du=x

  根据分步积分公式:

  ∫xcosx dx= cosx+∫sinx dx

  可以看出,积分更难进行,依然无法得到结果,所以u,v选择不恰当。

  正确思路应该是:

  Find ∫xcosx dx

  let u=x → du/dx=1

  dv/dx=cosx → v=sinx

  using the integration by parts formula:

  ∫xcosx dx=xsinx - ∫sinx dx= xsinx + cosx + c

  小结:如若被积函数是幂函数乘正余弦函数,那就令幂函数为u,使其降幂一次。

  然而在考试当中,一定不会只有以上这一种分步积分的考察式,

  其他如:Find ∫x2ex dx,∫x2 lnx dx, ∫exsinx dx

  那我们又应该如何来选择u呢?

  这里送给大家一个小口诀方便记忆:“反对幂三指”

  意思是对于乘积形式函数的积分,u的优先选择顺序应该是:反三角函数,对数函数,幂函数,三角函数,指数函数,简称为“反对幂三指”。

  所以 ∫x2ex dx,∫x2 lnx dx, ∫exsinx dx中的u分别对应的就应该是x2,lnx,sinx。

  我们再一起来总结一下今天的学习,对于乘积形式的函数进行积分,做题准则是使用合适的分部u,更好的使函数容易积分,一个好的分部,是积分成功的前提,当然最重要的u的选取小秘诀“反对幂三指”也要烂熟于心哦!


版权及免责声明
1.本网站所有原创内容(文字、图片、视频等)版权归新航道国际教育集团所有。未经书面授权,禁止任何形式的复制、转载或商用,违者将依法追究法律责任。本网站部分内容来源于第三方,转载仅为信息分享,不代表新航道观点,转载时请注明原始出处,并自行承担版权责任。
2.本网站内容仅供参考,不构成任何决策依据,用户应独立判断并承担使用风险,新航道不对内容的准确性、完整性负责,亦不承担因使用本网站内容而引发的任何直接或间接损失。
3.如涉及版权问题或内容争议,请及时与我们联系,电话:400-011-8885。
资料下载
手机号:
验证码: