1. 数学归纳法
设P(n)是关于自然数n的命题,若
1)(奠基) P(n)在n=1时成立;
2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立。
推论1 奠基为n=j ,归纳出P(n)对n≥j的成立情况。
推论2 奠基为n=1,2,……m,由P(k)成立推出P(k+m)成立,归纳出对于所有自然数成立的情况。
2. 第二数学归纳法
奠基 P(n)在n=1时成立;
归纳 在P(n)(1≤n≤k,k为任意自然数)成立的假定成立下可以推出P(k+1)成立,则P(n)对于一切自然数成立。
3. 反向归纳法
设P(n)是关于自然数n的命题,若
1)P(n)对无限多个自然数n成立;
2)在P(k)(k是大于1的自然数)成立的假设下可以推出P(k-1)成立,则P(n)对一切自然数都成立。
版权及免责声明
1.本网站所有原创内容(文字、图片、视频等)版权归新航道国际教育集团所有。未经书面授权,禁止任何形式的复制、转载或商用,违者将依法追究法律责任。本网站部分内容来源于第三方,转载仅为信息分享,不代表新航道观点,转载时请注明原始出处,并自行承担版权责任。
2.本网站内容仅供参考,不构成任何决策依据,用户应独立判断并承担使用风险,新航道不对内容的准确性、完整性负责,亦不承担因使用本网站内容而引发的任何直接或间接损失。
3.如涉及版权问题或内容争议,请及时与我们联系,电话:400-011-8885。